New models for old questions: generalized linear models for cost prediction.

نویسندگان

  • John L Moran
  • Patricia J Solomon
  • Aaron R Peisach
  • Jeffrey Martin
چکیده

BACKGROUND Generalized linear models (GLMs) have recently been introduced into cost data analysis. GLMs, transformations of the linear regression model, are characterized by a particular response distribution from one of the exponential family of distributions and monotonic link function which relates the response mean to a scale on which additive model effects operate. OBJECTIVES This study compared GLMs and ordinary least squares regression (OLS) in predicting individual patient costs in adult intensive care units (ICUs) and sought to define the utility of the inverse Gaussian distribution family within GLMs. METHODS A prospective 'ground-up' utilization costing study was performed in three adult university associated ICUs, enrolling consecutive ICU admissions over a 6-month period in 1991. ICU utilization, patient demographic and ICU admission day data were recorded by dedicated data collectors. Model performance was assessed by prediction error [mean absolute error (MAE), root mean squared error (RMSE)] and residual analysis. RESULTS The cohort, 1098 patients surviving ICU, was of mean (SD) age 56 (19.5) years and 41% female. Patient costs per ICU episode (1991 A$) were A$6311 (9689), with range A$106 to A$95602. Prediction error for mean costs was minimal (MAE 4780; RMSE 8965) with OLS using heteroscedastic retransformation of log costs and GLM with Gaussian family and log link (MAE 4798; RMSE 8907). Residual analysis suggested optimal overall performance for the above two models and a GLM with inverse Gaussian family and log link. CONCLUSIONS Traditional cost models of OLS with (log) cost transformation may be supplemented by appropriately specified GLM which more closely model the error structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear Bayesian prediction of generalized order statistics for liftime models

In this paper, we obtain  Bayesian prediction intervals as well as Bayes predictive estimators under square error loss for generalized order statistics when the distribution of the underlying population belongs to a family which includes several important distributions.

متن کامل

A New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models

Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...

متن کامل

Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks

The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Estimating Algorithms for Prediction and Spread of a Factor as a Pandemic: A Case Study of Global COVID-19 Prevalence

Background: This paper presents open-source computer simulation programs developed for simulating, tracking, and estimating the COVID-19 outbreak. Methods: The programs consisted of two separate parts: one set of programs built in Simulink with a block diagram display, and another one coded in MATLAB as scripts. The mathematical model used in this package was the SIR, SEIR, and SEIRD models re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of evaluation in clinical practice

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2007